107 research outputs found

    Continuous Modeling of 3D Building Rooftops From Airborne LIDAR and Imagery

    Get PDF
    In recent years, a number of mega-cities have provided 3D photorealistic virtual models to support the decisions making process for maintaining the cities' infrastructure and environment more effectively. 3D virtual city models are static snap-shots of the environment and represent the status quo at the time of their data acquisition. However, cities are dynamic system that continuously change over time. Accordingly, their virtual representation need to be regularly updated in a timely manner to allow for accurate analysis and simulated results that decisions are based upon. The concept of "continuous city modeling" is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. However, developing a universal intelligent machine enabling continuous modeling still remains a challenging task. Therefore, this thesis proposes a novel research framework for continuously reconstructing 3D building rooftops using multi-sensor data. For achieving this goal, we first proposes a 3D building rooftop modeling method using airborne LiDAR data. The main focus is on the implementation of an implicit regularization method which impose a data-driven building regularity to noisy boundaries of roof planes for reconstructing 3D building rooftop models. The implicit regularization process is implemented in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). Secondly, we propose a context-based geometric hashing method to align newly acquired image data with existing building models. The novelty is the use of context features to achieve robust and accurate matching results. Thirdly, the existing building models are refined by newly proposed sequential fusion method. The main advantage of the proposed method is its ability to progressively refine modeling errors frequently observed in LiDAR-driven building models. The refinement process is conducted in the framework of MDL combined with HAT. Markov Chain Monte Carlo (MDMC) coupled with Simulated Annealing (SA) is employed to perform a global optimization. The results demonstrates that the proposed continuous rooftop modeling methods show a promising aspects to support various critical decisions by not only reconstructing 3D rooftop models accurately, but also by updating the models using multi-sensor data

    Analysis on the KOSPI200 option from the time-series and cross- sectional perspectives

    Get PDF
    Thesis (S.M. in Management Studies)--Massachusetts Institute of Technology, Sloan School of Management, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 64-65).The Korean derivatives market is one of the most active markets in the world. The KOSPI200 options accounted for 43.4% of the global trading volume in equity index futures and options in 2011. It also accounted for 93.5% of the total trading volume in the Korean derivatives market in 2011. In this thesis, I examine why investors have traded KOSPI200 options so much among various equity index options in many global exchanges, and which factors have caused the change of the trading volume of the KOSPI200 options. From the cross-sectional perspective, I find that no-tax, low transaction fee and low margin requirement are the crucial factors explaining the high trading volume of the KOSPI200 options. High volatility of underlying index and high proportion of individual investors are also contributing factors that have differentiated the Korean derivatives market from other competing exchanges. From the time-series perspective, I conclude that contract size and margin requirement have clear causal effect on the trading volume of KOSPI200 options, while the proportion of individual investors has less clear effect on volume. In fact, the trading volume of KOSPI200 options shows an increasing pattern as these three factors decrease, and a decreasing pattern as three factors increase.by Jaewook Jung.S.M.in Management Studie

    Rydberg-atom graphs for quadratic unconstrained binary optimization problems

    Full text link
    There is a growing interest in harnessing the potential of the Rydberg-atom system to address complex combinatorial optimization challenges. Here we present an experimental demonstration of how the quadratic unconstrained binary optimization (QUBO) problem can be effectively addressed using Rydberg-atom graphs. The Rydberg-atom graphs are configurations of neutral atoms organized into mathematical graphs, facilitated by programmable optical tweezers, and designed to exhibit many-body ground states that correspond to the maximum independent set (MIS) of their respective graphs. We have developed four elementary Rydberg-atom subgraph components, not only to eliminate the need of local control but also to be robust against interatomic distance errors, while serving as the building blocks sufficient for formulating generic QUBO graphs. To validate the feasibility of our approach, we have conducted a series of Rydberg-atom experiments selected to demonstrate proof-of-concept operations of these building blocks. These experiments illustrate how these components can be used to programmatically encode the QUBO problems to Rydberg-atom graphs and, by measuring their many-body ground states, how their QUBO solutions are determined subsequently.Comment: 13 pages, 6 figure

    Security Analysis and Improvements of Session Key Establishment for Clustered Sensor Networks

    Get PDF
    WSN (wireless sensor network) is one of the main technologies in IoT (Internet of Things) applications or services. To date, several schemes have been proposed to establish a pair-wise key between two nodes in WSN, and most of them are designed to establish long-term keys used throughout the network lifetime. However, in the near future, if WSN will be used for information infrastructures in various fields such as manufacturing, distribution, or public facilities management and its life cycle can be as long as that of other common networks, it will definitely be advantageous in terms of security to encrypt messages using session keys instead of long-term keys. In this paper, we propose a session key establishment scheme for clustered sensor networks that is based on elliptic curve Diffie-Hellman (ECDH) key exchange and hash chain. The proposed scheme eliminates vulnerabilities of existing schemes for WSN and has improved security. The proposed scheme is efficient in terms of energy costs compared to related schemes

    Physical characterization of amorphous In-Ga-Zn-O thin-film transistors with direct-contact asymmetric graphene electrode

    Get PDF
    High performance a-IGZO thin-film transistors (TFTs) are fabricated using an asymmetric graphene drain electrode structure. A-IGZO TFTs (channel length = 3 μm) were successfully demonstrated with a saturation field-effect mobility of 6.6 cm2/Vs without additional processes between the graphene and a-IGZO layer. The graphene/a-IGZO junction exhibits Schottky characteristics and the contact property is affected not only by the Schottky barrier but also by the parasitic resistance from the depletion region under the graphene electrode. Therefore, to utilize the graphene layer as S/D electrodes for a-IGZO TFTs, an asymmetric electrode is essential, which can be easily applied to the conventional pixel electrode structure. © 2014 Author(s).1

    Sepsis-Like Systemic Inflammation Induced by Nano-Sized Extracellular Vesicles From Feces

    Get PDF
    Nano-sized extracellular vesicles (EVs), including exosomes, microvesicles, and other types of vesicles, are released by most mammalian cells and bacteria. We here ask whether feces contain EVs of mammalian and/or bacterial origin, and whether these EVs induce systemic inflammation. Fecal extracellular vesicles (fEVs) were isolated from mice and humans. The presence of EVs from Gram-negative and Gram-positive bacteria was detected by enzyme-linked immunosorbent assay using anti-lipid A and anti-lipoteichoic acid antibodies, whereas Western blot using anti-beta-actin antibody was employed to detect host-derived EVs in the fEVs. Further, fEVs were administered into mice by intraperitoneal injection, and inflammatory responses were investigated in the peritoneum, blood, and lungs. The role of TLR2 and TLR4 were studied using knockout mice. Significant quantities of EVs were present in feces from mice as well as humans, and derived from Gram-negative and Gram-positive bacteria, as well as the host. Bacteria-free fEVs introduced into the peritoneum induced local and systemic inflammation (including in the lungs), but fEVs from germ-free animals had weaker effects. This pronounced local and systemic inflammatory responses seemed to be induced by EVs from both Gram-negative and Gram-positive bacteria, and was attenuated in mice lacking TLR2 or TLR4. Our findings show that fEVs cause sepsis-like systemic inflammation, when introduced intraperitoneally, a process regulated by TLR2 and TLR4.11Ysciescopu

    Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI) contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional characteristics, including optimized size and modified surface. However, the biofunctionality and biocompatibility of SPIONs with various surface functional groups of different sizes have yet to be elucidated clearly. Therefore, it is important to carefully monitor the cytotoxicity and genotoxicity of SPIONs that are surfaced-modified with various functional groups of different sizes. In this study, we evaluated SPIONs with diameters of approximately 10 nm and 100~150 nm, containing different surface functional groups. SPIONs were covered with −O− groups, so-called bare SPIONs. Following this, they were modified with three different functional groups – hydroxyl (−OH), carboxylic (−COOH), and amine (−NH2) groups – by coating their surfaces with tetraethyl orthosilicate (TEOS), (3-aminopropyl)trimethoxysilane (APTMS), TEOS-APTMS, or citrate, which imparted different surface charges and sizes to the particles. The effects of SPIONs coated with these functional groups on mitochondrial activity, intracellular accumulation of reactive oxygen species, membrane integrity, and DNA stability in L-929 fibroblasts were determined by water-soluble tetrazolium, 2′,7′-dichlorodihydrofluorescein, lactate dehydrogenase, and comet assays, respectively. Our toxicological observations suggest that the functional groups and sizes of SPIONs are critical determinants of cellular responses, degrees of cytotoxicity and genotoxicity, and potential mechanisms of toxicity. Nanoparticles with various surface modifications and of different sizes induced slight, but possibly meaningful, changes in cell cytotoxicity and genotoxicity, which would be significantly valuable in further studies of bioconjugation and cell interaction for drug delivery, cell culture, and cancer-targeting applications
    corecore